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Abstract

In this paper, analytical solutions for temperature distributions in the microchannel heat sink are obtained by
using both one-equation and two-equation models for heat transfer. From the analytical solutions, variables of
engineering importance are identi®ed as the Darcy number and the e�ective thermal conductivity ratio, and their

e�ects are studied. To check the validity of the local thermal equilibrium assumption and the corresponding one-
equation model, the relative temperature di�erence between the ¯uid and solid phases and the relative error for
using the one-equation model are de®ned. The asymptotic behavior of the relative temperature di�erence between

the phases is examined by using the order of magnitude analysis to con®rm the applicability of the local thermal
equilibrium assumption and the one-equation model. Finally, the relative error map is presented with respect to
variables of engineering importance to identify the applicable region of the one-equation model in practical

problems involving the microchannel heat sinks. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Microchannel heat sinks have received much

attention due to their potential for cooling high-

power microelectronic devices. Tuckerman and Pease

[1,2] demonstrated that the water-cooled microchan-

nel heat sink is capable of dissipating heat ¯ux of

790 W/cm2 without a phase change. The high thermal

performance of the microchannel heat sink is based on

the idea that the heat transfer coe�cient is inversely

proportional to the hydraulic diameter of the channel.

In view of the small dimensions of channels and ®ns,

Koh and Colony [3] noticed that characteristics of

¯uid ¯ow and heat transfer in the microstructures

described in [1,2] are similar to those in porous ma-

terial. They modeled the microstructures as a porous

medium using Darcy's law to describe the ¯ow. Later,

Tien and Kuo [4] proposed a model using the Brink-

man-extended Darcy equation which accounts for the

boundary e�ect on convection problems. Recently,

Kim and Kim [5] reported analytical solutions for vel-

ocity and temperature distributions in microchannel

heat sinks by modeling the microchannel heat sink as

a ¯uid-saturated porous medium. Their analytical sol-

utions are shown to be in agreement with the closed-

form solution for the velocity distribution and the nu-

merical solutions for the conjugate heat transfer pro-

blem, which comprises the solid ®n and the ¯uid in the

microchannel heat sink. In these studies [3±5], they
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used the two-equation model for heat transfer, which

treats the ¯uid and the solid regions separately.

What makes the two-equation model more di�-

cult to apply is the fact that it requires information

on the e�ective conductivity values for the individ-

ual phases and the interstitial heat transfer coe�-

cient, which are usually determined through

experimental investigations. Even though experimen-

tal data are available for heat transfer in packed

beds, the interstitial heat transfer coe�cient is not

generally known a priori for other types of porous

media. Moreover, the e�ective conductivity values

depend on the microscopic structure of the porous

medium as well as the pure substances comprising

the porous medium. Due to these di�culties, many

investigators have used the so-called one-equation

model for analyses of convection heat transfer in

channels ®lled with porous media. These include

Kaviany [6], Vafai and Kim [7], and Poulikakos

and Renken [8], to name a few. In the one-equation

model, one energy equation covers both the ¯uid

and solid phases, and this simplicity has made the

one-equation model a convenient tool for analyzing

heat transfer through porous media. However, the

one-equation model is valid only when the thermal

interaction between the ¯uid and solid phases is

highly e�ective. In this case, the local temperature

di�erence between them is negligibly small, i.e., the

¯uid phase is in local thermal equilibrium (LTE

hereafter) with the solid phase.

Much research has been conducted to determine the

applicable region of the one-equation model for convec-

tion through porous media. Carbonell and Whitaker [9]

presented the criteria for the validity of LTE approxi-

mation based on the order of magnitude analysis. Amiri

and Vafai [10] compared the local temperature distri-

butions of the ¯uid and solid phases by using the nu-

merical solution in the case of ¯ow through a channel

®lled with a packed bed. They presented an error con-

tour map in terms of the particle Reynolds number and

the Darcy number. Recently, Lee and Vafai [11] pro-

posed a criterion for the validity of the one-equation

model in the case of ¯ow through a porous channel sub-

ject to a constant heat ¯ux on the top and bottom walls

Nomenclature

a wetted area per volume
cf heat capacity of ¯uid
C e�ective thermal conductivity ratio, ekf

�1ÿe�ks

dh hydraulic diameter of the microchannel
D equivalent Biot number, htaH

2

�1ÿe�ks

Da Darcy number, K
eH 2 � w2

c

12H 2

E1EQ relative error for using the one-equation
model, yfÿy

yf

ELTE
yfÿys

y
hm heat transfer coe�cient based on the bulk-

mean temperature
hl heat transfer coe�cient based on the local

temperature

H channel height
kf conductivity of ¯uid
kfe e�ective conductivity of ¯uid

ks conductivity of solid
kse e�ective conductivity of solid
K permeability
L length of heat sink

Nu1, 0 overall Nusselt number for the fully-devel-
oped ¯ow in the microchannel, hmH

ekf

Nu1, l local Nusselt number for the fully-developed

¯ow in the microchannel, hldh

kf

p pressure
P dimensionless pressure, K

emfum

dhpif
dx

qw heat ¯ux over the bottom surface

T temperature
Tb bulk-mean temperature of the ¯uid
u velocity

um mean velocity in the ¯uid region
U dimensionless velocity, huifum

wc channel width

Y dimensionless vertical coordinate, y
H

Greek symbols

as aspect ratio of the microchannel, H
wc

e porosity
rf density of ¯uid
y dimensionless temperature under local

thermal equilibrium,

hT ifÿTw

qwH
�1ÿe�ks

yf dimensionless temperature of ¯uid,
hT ifÿTw

qwH
�1ÿe�ks

ys dimensionless temperature of solid,
hT isÿTw

qwH
�1ÿe�ks

mf viscosity of ¯uid

h if volume-averaged value over the ¯uid region
h is volume-averaged value over the solid region
h i volume-averaged value over a REV contain-

ing both the ¯uid and solid phases
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by using analytical solutions based on the Darcian ¯ow
model for ¯uid ¯ow and the two-equation model for

heat transfer. They focus only on the qualitative presen-
tation of the heat transfer in porous media by taking the
e�ective conductivities and the interstitial heat transfer

coe�cient as parameters without referring to a speci®c
structure of the porous medium. Even though their
work was successful in revealing the general features of

the convective heat transfer in porous media, the e�ect
of microscopic structures of the porous medium on the
thermal interaction between the solid matrix and the

¯uid was not covered.
In the present study, a more direct description on the

relation between the microscopic structure of the porous
medium and the macroscopic convective heat transfer in

the porous medium is presented. For this purpose, the
heat transfer in a microchannel heat sink, which is a
well-organized porous medium, is analyzed theoreti-

cally. The microchannel heat sink is attractive in that
the interstitial heat transfer coe�cient can be deter-
mined by the use of numerical experimentation as

shown in [4,5]. The main purpose of the present paper is
to present a criterion in terms of the parameters con-
cerning the microstructure of the porous media by

which we can determine the validity of the LTE and the
corresponding one-equation model. To check the val-
idity of the LTE assumption and the corresponding one-
equation model, the relative temperature di�erence

between the solid and ¯uid phases and the relative error
for using the one-equation model are de®ned. The
asymptotic behavior of the relative temperature di�er-

ence between the phases is examined by using the order
of magnitude analysis to con®rm the applicability of the
LTE and the one-equation model to convection heat

transfer in the microchannel heat sink. Finally, the rela-
tive error map, with respect to the variables of engineer-
ing importance, is presented to identify the applicable
region of the one-equation model in practical problems

involving the microchannel heat sinks.

2. Problem description

The problem under consideration in this paper is
forced convective ¯ow through a microchannel as
shown in Fig. 1(a). The direction of ¯uid ¯ow is paral-
lel to x. The bottom surface is uniformly heated and

the top surface is insulated. A coolant passes through
the microchannel and takes heat away from a heat dis-
sipating component attached to the microchannel heat

sink. In analyzing the problem, the ¯ow is assumed to
be laminar and both hydrodynamically and thermally
fully developed. All thermo-physical properties are

assumed to be constant.
The microchannel heat sink is modeled as a porous

structure (Fig. 1(b)), as proposed by Tien and Kuo [4].

The governing equations for the velocity and tempera-
ture ®elds in the microstructure are established by
applying the volume-averaging technique. The Brink-

man-extended Darcy equation, which is developed for
describing ¯uid ¯ow in a porous medium, is used in

place of the Darcy equation in order to account for
the boundary e�ect. In obtaining the volume-averaged
energy equation, there are two approaches. One is

averaging over a representative elementary volume
(REV hereafter) containing both the ¯uid and solid
phases, and the other is applying the volume-averaging

technique to the solid region and the ¯uid region sep-
arately within the REV. These two models are referred

to as the one-equation model and the two-equation
model, respectively. Both of them are used to check
the validity of the one-equation model against the two-

equation model. In the present paper, the REV for
volume-averaging is a slender cylinder aligned parallel

Fig. 1. Porous medium approach: (a) microchannel heat sink;

(b) equivalent porous medium.
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to the top and bottom walls but perpendicular to the
¯ow direction, as shown in Fig. 1(a). The resultant

volume-averaged equations are valid because the REV
is long enough to yield statistically meaningful
averages, and the direction of volume-averaging is

independent of the paths of ¯uid ¯ow and heat trans-
fer, as pointed out by Kim and Kim [5].

3. Mathematical formulation and solutions

To analyze ¯uid ¯ow and heat transfer through the
microchannel heat sink, the Brinkman-extended Darcy
equation and volume-averaged energy equations for

the solid and ¯uid phases are solved.

3.1. Velocity distribution

For the present problem, the Brinkman-extended
Darcy equation and boundary conditions are as pro-
posed by Vafai and Tien [12]

ÿ d

dx
hpif � mf

d2

dy2
huif ÿ

mf

K
ehuif � 0 �1�

huif � 0 at y � 0, H �2�
where h if denotes a volume-averaged value over the

¯uid region and p, mf , u, e, K and H are pressure, vis-
cosity, velocity, porosity, permeability and channel
height, respectively.

For the rectangular microchannel, the porosity and
the permeability can be represented as [13]

e � wc

w
, K � ew2

c

12
, �3�

where wc and w are channel width and width of ®n
and channel combined, respectively.
Eq. (1) and boundary condition (BC) (2) can be

nondimensionalized by using the following dimension-
less variables,

U � huif
um

, Da � K

eH 2
� 1

12a2s
, Y � y

H
,

P � K

emfum

dhpif
dx

,

�4�

where um is the mean velocity in the ¯uid region. Note
that the Darcy number is inversely proportional to the

aspect ratio squared.
Then the dimensionless momentum equation and

boundary conditions are expressed as follows;

U � Da
d2U

dy2
ÿ P �5�

U � 0 at Y � 0, 1 �6�
When Eq. (5) is solved with BC (6), the velocity dis-

tribution is obtained as follows [5]:

U � P

8>>>>><>>>>>:
cosh

 �����������
1

Da
Y

r !

�
1ÿ cosh

 ��������
1

Da

r !

sinh

 ��������
1

Da

r ! sinh

 ��������
1

Da

r
Y

!
ÿ 1

9>>>>>=>>>>>;
�7�

Since
� 1
0 U dY � 1,

P �
sinh

 ��������
1

Da

r !

2
�������
Da
p

(
cosh

 ��������
1

Da

r !
ÿ 1

)
ÿ sinh

 ��������
1

Da

r ! �8�

3.2. Two-equation model

The volume-averaged energy equations and bound-
ary conditions for the solid and ¯uid phases without

the assumption of LTE are expressed as [4,5]

kse
@ 2hT is
@y2

� hla�hT is ÿ hT if � �9�

erfcfhuif
@ hT if
@x
� hla�hT is ÿ hT if � � kfe

@ 2hT if
@y2

�10�

hT is � hT if � Tw at y � 0 �11�

@ hT is
@y
� @ hT if

@y
� 0 at y � H �12�

where h is means a volume-averaged value over the

solid region and kse, T, hl, a, rf , cf and kfe are e�ective
conductivity of the solid matrix, temperature, local
heat transfer coe�cient, wetted area per volume, den-

sity, heat capacity and e�ective conductivity of ¯uid,
respectively. The local heat transfer coe�cient hl is the
proportionality constant between the interfacial heat
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¯ux and the solid±¯uid temperature di�erence within
the REV.

For the microchannel, the e�ective conductivities
can be represented as [4,5]

kse � �1ÿ e�ks, kfe � ekf , �13�

where ks and kf are conductivity of solid and conduc-
tivity of ¯uid, respectively.

Eqs. (9)±(12) can be nondimensionalized by using
the dimensionless variables listed in Eq. (4) and the
following variables,

ys � hTis ÿ Tw

qwH

�1ÿ e�ks

, yf � hTif ÿ Tw

qwH

�1ÿ e�ks

�14�

where qw is the heat ¯ux over the bottom surface of

the microchannel heat sink.
For the fully developed ¯ow subject to a constant

heat ¯ux, dimensionless equations and boundary con-

ditions are expressed as follows;

d2ys

dY 2
� D�ys ÿ yf � �15�

U � D�ys ÿ yf � � C
d2yf

dY 2
�16�

ys � yf � 0 at Y � 0 �17�

dys
dY
� dyf

dY
� 0 at Y � 1, �18�

where

C � ekf

�1ÿ e�ks

and D � hlaH
2

�1ÿ e�ks

With the velocity distribution given by Eq. (7),
energy equations (15) and (16) with BCs (17) and (18)
can be solved as follows [5]:

yf � P

1� C

2666664ÿ
1

2
Y 2 � C1Y� C2 ÿ C3

cosh

 ��������������������
D�1� C�

C

r
Y

!
ÿ C4 sinh

 ��������������������
D�1� C�

C

r
Y

!
� C5

�

8>>>>><>>>>>:
cosh

 ��������
1

Da

r
Y

!

�
1ÿ cosh

 ��������
1

Da

r !

sinh

 ��������
1

Da

r ! sinh

 ��������
1

Da

r
Y

!9>>>>>=>>>>>;

3777775 (19)

ys � P

2666664Da

8>>>>><>>>>>:
cosh

 ��������
1

Da

r
Y

!

�
1ÿ cosh

 ��������
1

Da

r !

sinh

 ��������
1

Da

r ! sinh

 ��������
1

Da

r
Y

!9>>>>>=>>>>>;
ÿ 1

2
Y 2

� C1YÿDa

3777775ÿ Cyf �20�

where,

D1 � D�1� C� ÿ C

Da

N1 � D�1� C�
��������
1

Da

r (
1ÿ cosh

 ��������
1

Da

r !)

N2 � C

Da

��������������������
D�1� C�

C

r
sinh

 ��������
1

Da

r !
sinh

 ��������������������
D�1� C�

C

r !
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C1 � 1ÿ

�������
Da
p

 
cosh

 ��������
1

Da

r !
ÿ 1

!

sinh

 ��������
1

Da

r !

C2 � ÿDa� 1

D�1� C�

C3 � ÿ C

DaD�1� C�D1

C4 �

N1 �N2

D�1� C�
��������������������
D�1� C�

C

r
cosh

 ��������������������
D�1� C�

C

r !
sinh

� ���
1
p

Da

�
D1

C5 � Daÿ 1

D1

3.3. One-equation model

In the one-equation model, the governing equation

can be obtained by assuming the temperatures of the
¯uid and solid phases are the same, i.e. yf � ys � y,
and adding Eqs. (15) and (16). This leads to

�1� C� @
2y

@Y 2
� U �21�

where y � hTiÿTw

qwH=��1ÿe�ks � and hTi is a temperature aver-

aged over the REV containing both the ¯uid and solid

phases under the LTE assumption.
The pertinent boundary conditions are

y � 0 at Y � 0 �22�

@y
@Y
� 0 at Y � 1: �23�

With the velocity distribution given by Eq. (7), the
temperature pro®le can be readily obtained as

y � P

1� C

2666664ÿ
1

2
Y 2 � C1YÿDa

8>>>>><>>>>>:
1

ÿ cosh

 ��������
1

Da

r
Y

!

ÿ
1ÿ cosh

 ��������
1

Da

r !

sinh

 ��������
1

Da

r ! sinh

 ��������
1

Da

r
Y

!9>>>>>=>>>>>;

3777775 �24�

4. Temperature distributions and heat transfer

characteristics

To validate the porous medium model of the micro-
channel heat sink and the analytical solutions based on

that model, Eqs. (7), (19) and (20) are compared with
the corresponding velocity and temperature distri-
butions for the conjugate heat transfer problem com-

prising both the solid ®n and the ¯uid. The
formulation and the numerical method for the conju-
gate heat transfer problem are very similar to those in

Sparrow et al. [14], and are not repeated here for brev-
ity. Only the conventional energy equation is solved
numerically, because a closed-form solution exists for
the fully-developed channel ¯ow in the form of [15]

U �

X1
n�1, 3,...

ÿ 1

n4

266641ÿ
cosh

�
npH
wc

�Yÿ 0:5�
�

cosh

�
npH
2wc

�
37775

X1
n�1, 3,...

ÿ 1

n4

�
1ÿ 2wc

npH
tanh

�
npH
2wc

�� �25�

Note that the velocity distribution given in Eq. (25) is

the result of volume-averaging in the z-direction so
that it may be compared with Eq. (7), which is the sol-
ution of the extended Darcy equation. In Fig. 2(a), for
Da � 10ÿ3, Eq. (25) is compared with the analytical

solution of the present study, Eq. (7). In Fig. 2(a), Eq.
(7) is shown to predict the velocity pro®le of Eq. (25)
within 1%. For the REV, the unidirectional ¯ow in

the x-direction can be modeled as the ¯ow between
two parallel plates. Hence, the permeability based on
the Hagen±Poiseuille ¯ow between two parallel plates

is used in the present analysis, and this accounts for
the microscopic viscous e�ect of side walls in the
microchannel successfully.
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Similarly, in Fig. 2(b), Eqs. (19) and (20) are com-

pared with the corresponding volume-averaged tem-

perature distributions from the numerical solutions. As

mentioned before, numerical solutions for the fully-

developed temperature distribution are obtained by

using the ®nite di�erence method for the conjugate

heat transfer problem composed of the ®ns and the

microchannel between them. In Fig. 2(b), Eqs. (19)

and (20) from the porous medium model are shown to

be accurate in comparison with these numerical sol-

utions up to 3%. This excellent agreement is mainly

due to the appropriate local heat transfer coe�cient

for the fully-developed ¯ow in the microchannel hl,

which is obtained from the numerical solution for the

fully-developed ¯ow in the microchannel. This

accounts for the interfacial thermal interaction between

the ®ns and the ¯uid ¯owing in the microchannel. It

goes without saying that these analytical solutions

from the porous medium model are helpful in identify-

ing and studying the e�ects of variables of engineering
importance. So the extension to more practical

research, such as optimization of the microchannel
heat sink, is possible without tedious numerical com-
putations, which is illustrated in [5].

The analytical solutions Eqs. (19) and (20) show
that the dimensionless temperatures, yf and ys, are
functions of Da, C and D, Note that the equivalent

Biot number D depends on the Darcy number Da and
the e�ective conductivity ratio C, since, by using Eq.
(4), D can be expressed as

D � H 2

�1ÿ e�ks

hla � CNu1, l

�
1

12Da
� 1�����������

12Da
p

�
�26�

where Nu1;l � hldh

kf
and dh is hydraulic diameter of the

microchannel. Hence, yf , ys, and y (from Eq. (24)) are

functions of Da and C. The temperature distributions
for the ¯uid and solid phases obtained from the two-
equation model yf and ys, are depicted together with

the temperature pro®les from the one-equation model,
y, in Figs. 3 and 4 for a range of parameters, Da and
C. In these ®gures, the values of the key parameters,
Da and C, are chosen so that the in¯uence of each par-

ameter on the temperature pro®les can be clearly illus-
trated.
As shown in Figs. 3 and 4, the temperature di�er-

ence between the two phases decreases as either Da
decreases or C increases. In Figs. 3(c) or 4(c), the ¯uid
temperature is not distinguishable from the solid tem-

perature for Da � 0:001 and C � 1:0, in which case the
LTE can be assumed and the one-equation model
would be appropriate. As Da decreases (or as as

increases) while C and the channel height H are ®xed,
the channel width wc decreases. The channel height (a
length scale used for non-dimensionalization) is arbi-
trarily ®xed to help in better explaining the e�ect of

Da on the temperature distributions illustrated in Fig.
3. The decrease in wc in turn results in the increase in
the interstitial heat transfer coe�cient as well as the

increase in the speci®c wetted area available for the
heat transfer between the solid and the ¯uid. Both of
these are responsible for the decrease in the tempera-

ture di�erence between the phases. On the other hand,
the temperature di�erence between the phases
decreases as C increases. The e�ective thermal conduc-
tivity ratio, C represents the ratio of the heat conduc-

tance between the ¯uid and the solid [11]. Thus the
increase in C can be interpreted as the relative increase
in the heat conductance through the ¯uid phase com-

pared to that through the solid phase. Therefore, as C
increases, the heat supplied from the bottom surface
tends to be transferred directly to the ¯uid rather than

detouring through the solid and ®nally to the ¯uid.
This implies the decrease in the amount of heat trans-
fer between the phases, where in turn results in the

Fig. 2. Comparisons with solutions from conventional

methods �Da � 0:001): (a) velocity; (b) temperature

�C � 0:005).
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Fig. 3. E�ect of Da on temperature distributions �C � 1): (a) Da � 0:1; (b) Da � 0:01; (c) Da � 0:001:
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Fig. 4. E�ect of C on temperature distributions �Da � 0:001): (a) C � 0:01; (b) C � 0:1; (c) C � 1:
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decrease in the temperature di�erence between the
phases.

It is important in thermal management of the elec-
tronic equipment to enhance the heat transfer rate
between the heated wall and the ¯uid, i.e., the convec-

tion heat transfer rate in the heat sink. As a measure
of the convection heat transfer rate, the overall Nusselt
number is typically used. From the analytical solutions

for the velocity and ¯uid temperature distributions, the
overall Nusselt number of the microchannel heat sink
can be determined as

Nu1, o � 2Hhm

ekf

� 2qwH

ekf�Tw ÿ Tb � � ÿ
2

C

�1
0

Uyf dY

� ÿ 2

Cyf, b

, �27�

where Tb and hm are the bulk-mean temperature of the
¯uid and the heat transfer coe�cient between the heat
sink base and the ¯uid based on the bulk-mean tem-

perature, respectively. After some manipulation using
Eqs. (7) and (19), the dimensionless bulk-mean tem-
perature for the microchannel heat sink can be

obtained in a closed-form as the one shown in Appen-
dix A. Since U is a function of Da, and yf is a function
of Da and C, Nu1, o is also a function of Da and C.
Now, several limiting behaviors of heat transfer

characteristics in the microchannel heat sink are stu-
died by examining limiting values of Nu1, o: As Da
approaches in®nity (or as40), it can be easily seen

from Eq. (27) that

lim
Da41

Nu1, o � 5:385, �28�

which is identical to the Nusselt number for fully-

developed convective ¯ow between parallel plates
with uniform heat ¯ux on one side and insulated
on the other side. [13] This is because, as Da

approaches in®nity, the heat and ¯uid ¯ow charac-
teristics of the microchannel heat sink approach
those of convective ¯ow between parallel plates

where top plate is insulated and bottom plate is
uniformly heated, and e � 1 for this case. On the
other hand, as Da approaches 0, it can be also

shown from Eq. (27),

lim
Da4 0

Nu1, o � 6�1� C�
C

�29�

In this case, the boundary e�ect of top and bottom
surfaces is negligible and the heat transfer area
between the ®n and the ¯uid is so large that the

temperature di�erence between the ¯uid and solid
phases is negligible. Hence, it is not surprising to
see that the Nusselt number matches with Eq. (29)

when the ¯ow is assumed to be Darcian and the
¯uid in LTE with the solid. This agreement in the
overall Nusselt numbers shows that the porous med-

ium approach can predict the thermal performance
of the microchannel heat sink accurately for broad
range of parameters.
In order to show in¯uences of Da and C on the ther-

mal performance of the microchannel heat sink more
clearly, the contour map of the overall Nusselt number
with respect to Da and C, is presented in Fig. 5. In this

®gure, Nu1, o increases as either Da or C decreases,
which is resulted from the increase in the local heat
transfer coe�cient or the decrease in the thermal resist-

ance through the ®n. More importantly, Nu1, o is
shown in Fig. 5 to approach an asymptotic value as
either Da decreases while C is held constant or C
decreases while Da is held constant. The former is

because the heat sink ®ns lose their e�ciency as their
length increases over a certain value, and the latter is
because the ratio of the conduction resistance through

the ®ns to the convection resistance gets smaller. This
implies there is a practical limit in the values of the
Darcy number and the e�ective thermal conductivity

ratio below which the heat transfer performance of the
microchannel heat sink would not be increased further.
For example, in the case of C � 0:0631
�Log�C � � ÿ1:2), increase in the overall Nusselt number
is shown to be negligible for DaR0:000316
�Log�Da�Rÿ 3:5� which is a practical limit in this case.

5. Discussion on the applicability of the local thermal

equilibrium assumption

In the previous section, the temperature pro®les

Fig. 5. Contour map of the overall Nusselt number, Nu1, o:
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from the two-equation model and the one-equation
model are compared and the qualitative discussion on

the LTE is presented. In the present section, the appli-
cability of the LTE and the corresponding one-
equation model is analyzed quantitatively and the

asymptotic behavior of the temperature di�erence
between the phases is examined.
To validate the LTE assumption, the local tempera-

ture di�erence between the ¯uid and solid phases
should be negligibly small. Hence, we can de®ne ELTE

as a measure of the validity of the LTE as follows;

ELTE � yf ÿ ys

y
� 1 �30�

This de®nition is similar to the one used by Quintard
and Whitaker [16] for the transient conduction prob-
lem in the porous medium. In the above de®nition, the

temperature obtained from the one-equation model is
used as a scale temperature for the temperature di�er-
ence between the phases. Here, y means the di�erence

between the volume-averaged temperature of the heat
sink (for the representative element volume containing
both the ¯uid and solid phases) and the heated wall

temperature under the LTE assumption. Even though
it is certain that Eq. (30) validates the application of
the one-equation model, another ®gure of merit, EIEQ

is introduced to check more directly the validity of

using the one-equation model as follows;

E1EQ � yf ÿ y
yf

� 1 �31�

In the above de®nition, the relative error E1EQ is
de®ned as the relative error for estimating the ¯uid

temperature using the one-equation model. The reason
for choosing the ¯uid temperature instead of the solid
temperature in the above de®nition is because the ¯uid

temperature obtained from the two-equation model is
shown in Fig. 4 to be farther away from the tempera-
ture obtained using the one-equation model. Hence the

above de®nition based on the ¯uid temperature would
be more stringent than the one based on the solid tem-
perature.
The order of magnitude analysis is helpful in esti-

mating the asymptotic behavior of ELTE for the limit-
ing cases where Da becomes in®nitesimally small or C
becomes in®nitely large. From Eqs. (15), (16) and (21),

a di�erential equation comprising both yf ÿ ys and y
can be obtained as

C
d2�yf ÿ ys �

dY 2
ÿD�1� C��yf ÿ ys � � �1� C� d2y

dY 2
�32�

The magnitude of ELTE can be estimated from Eq. (32)
as

�yf ÿ ys �
y

� O

�
1� C

C�D�1� C�
�

�33�

Then, the asymptotic behavior of ELTE can be easily
estimated by using Eq. (33) as

�yf ÿ ys �
y

�

8>>>>><>>>>>:
O

�
12Da

CNu1, l

�
when Da� 1

O

 
12Da

CNu1, l

ÿ �����������
12Da
p � 1

� ! when C� 1

�34�

Eq. (34) shows that Da and C simultaneously a�ect
the magnitude of ELTE and con®rms the tendency that
the di�erence between yf and ys decreases as either Da

decreases or C increases, as discussed in Section 4. In
porous media, C is usually smaller than 1 and Da is
much smaller than 1. Hence, the ®rst equation in Eq.

(34) is practically more useful in validating the LTE
assumption and the corresponding one-equation
model. The ®rst equation in Eq. (34) can be simpli®ed

further by considering that Nu1, l converges to a con-
stant value, 10.4, as Da decreases when the laminar
¯ow dominates within the porous medium [5]. From

the order of magnitude analysis, the ®rst equation in
Eq. (34) can be rewritten as

ELTE � O

�
Da

C

�
when Da� 1 �35�

Eq. (35) shows that ELTE is simply represented by
Da=C: As mentioned above, laminar ¯ow is assumed

in derivation of Eq. (35). In case of turbulent ¯ow, the
Nusselt number in the pore level, Nu1, l increases with
the increase in the ¯uid velocity due to the dispersion
e�ect [10]. In this case, ELTE becomes even smaller

than O(Da/C ) since the thermal communication
between the phases gets more e�ective which results in
the decrease in the temperature di�erence. Conse-

quently, ELTE can not be larger than O(Da/C ) and Eq.
(35) would be considered as a conservative estimate
when validating the LTE assumption.

Since 0 > ys > y > yf , from the de®nitions of ELTE

and E1EQ, we can infer that ELTE > E1EQ which implies
that the condition for LTE to be valid is a su�cient
condition for the one-equation model to be valid.

Hence, we can safely assume that E1EQ would exhibit
the same asymptotic behavior as ELTE in the limiting
cases where either Da approaches a very small value or

C approaches a very large value.
As pointed out in Section 4, yf and y are functions

of Da and C. Hence, E1EQ is a function of Da and C.

Fig. 6 shows the contour map of averaged in the y-
direction by using the analytical solutions, Eqs. (19)
and (24). In this ®gure, E1EQ is shown to decrease as
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either Da decreases or C increases, and this con®rms
the qualitative discussion in Section 4. From this ten-
dency, Fig. 6 can be practically applied to the micro-

channel heat sink in checking if it is valid to use the
one-equation model for thermal analysis of the micro-
channel heat sink. For example, in the region above

the contour line of E1EQ � 0:1, we can expect the rela-
tive error for using the one-equation model to be

smaller than 0.1.
It is in order to check if the one-equation model is

valid in practical microchannel heat sinks. As a ma-

terial of heat sink, we typically use silicon, aluminum
or copper. If we choose water as a coolant and set the
practical limit of Da to 0.000833 (or as � 10� by

accounting for the manufacturing capability and the
cost for machining the microchannel, the values of
E1EQ can be obtained from Fig. 6 for various porosities

and solid materials. The results are summarized in
Table 1. From Table 1, it can be shown that the one-
equation model can be practically applied to micro-

channel heat sinks only when the heat sink is highly
porous. With a practically allowable relative error

E1EQ of 0.1, the recommended porosity for the one-
equation model to be valid is larger than 0.9. If air is
used instead as a coolant, the values of C are much

less than those for the case of water and the rec-
ommended porosity is expected to be very close to 1.

6. Conclusion

In this paper, direct descriptions on the relation
between the microstructure of the porous medium and
the macroscopic convective heat transfer in the porous

medium are presented for a well-de®ned porous me-
dium, the microchannel heat sink. The applicability of
the one-equation model for the microchannel heat sink
when the microchannel heat sink is treated as a porous

medium is also presented. Analytical solutions for tem-
perature distribution are obtained by using both the
one-equation and two-equation models for the case

where the bottom surface is uniformly heated and the
top surface is insulated. Variables of engineering im-
portance are identi®ed as Darcy number Da and e�ec-

tive thermal conductivity ratio C from the analytical
solutions, and their e�ects on the heat transfer in the
microchannel heat sink are studied. As either Da
decreases or C increases, the ¯uid temperature

approaches the solid temperature, in which case the
LTE assumption and the one-equation model would
be appropriate. In addition, as either one of Da and C

decreases, the overall Nusselt number of the micro-
channel heat sink Nu1, o is shown to increase to an
asymptotic value. To check the validity of the LTE

assumption and the corresponding one-equation
model, the relative temperature di�erence between the
phases ELTE and the relative error for using the one-

equation model E1EQ are de®ned. The asymptotic
behavior of ELTE is examined by using the order of
magnitude analysis to present the overall tendency in
relation to the validity of the LTE assumption and the

Table 1

E1EQ in practical microchannel heat sinks �as � 10,Da � 0:0008333)

e Silicon and water Aluminium and water Copper and water

C E1EQ C E1EQ C E1EQ

0.50 0.00413 0.407 0.00258 0.524 0.00152 0.652

0.60 0.00620 0.314 0.00387 0.423 0.00228 0.555

0.70 0.00964 0.226 0.00602 0.320 0.00355 0.444

0.80 0.0165 0.145 0.0103 0.215 0.00608 0.318

0.90 0.0372 0.069 0.0232 0.107 0.0137 0.170

0.99 0.409 0.005 0.255 0.009 0.150 0.016

Fig. 6. Contour map of E1EQ:

S.J. Kim et al. / Int. J. Heat Mass Transfer 43 (2000) 1735±17481746



one-equation model. The asymptotic behavior is shown

to be on the order of Da/C, which con®rms the ten-

dency that the temperature di�erence between yf and ys

decreases as either Da decreases or C increases. Since

0 > ys > y > yf , it can be inferred that ELTE > E1EQ

which implies that the condition for LTE to be valid is

a su�cient condition for the one-equation model to be

valid. Finally, the relative error map in terms of Da and

C is presented to identify the applicable region of the

one-equation model in practical problems involving the

microchannel heat sinks. In conclusion, the one-
equation model can be practically applied to microchan-
nel heat sinks only with very high porosity.
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